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OZET:
Fenelzin: Eski bir ilag, yeni noroprotektif ajanlarin
gelistirilmesine ipuglari tutabilir

Panik bozukluk ve sosyal anksiyete bozuklugu gibi anksiye-
te bozukluklarinin tedavisinde kullanilan monoamin oksi-
daz (MAO) inhibitorii bir antidepresan olan fenelzinin gegi-
ci 6nbeyin iskemisi olan bir hayvan modelinde néroprotek-
tif etkileri oldugu gosterilmistir. Fenelzinin MAO inhibisyo-
nu etkisi yani sira farmakolojik ve terapétik profiline ekle-
nebilir cok sayida etkisi vardir. Bu etkiler GABA transamina-
zin inhibisyonuyla beyin GABA dizeylerini arttirmasi, glu-
tamatin islevsel durumu Gzerine etkileri, reaktif aldehitlerin
tutulumu, primer amin oksidaz inhibisyonu ve beyin kay-
nakli norotrofik faktor (BDNF) tizerindeki etkilerin inhibe
edilmesidir. 2-Feniletilidenehidrazin, fenelzinin énemli bir
metabolit olup GABA beyin dlizeylerini arttirdigi gosteril-
mistir ve gegici 6nbeyin iskemisi modelinde reaktif aldehit-
lerin tutulumu ve noéroprotektif etkileri kesfedilmistir. Fe-
nelzin ve feniletilidenehidrazin bu etkileri nedeniyle 6zel-
likle nérodejenerasyon iceren psikiyatrik ve nérolojik bo-
zukluklarin tedavisi icin gelecekte ilag tasarimi yoninden
g6z 6nlinde tutulmalidir.

Anahtar sozciikler: Fenelzin, noéroproteksiyon, -
aminobutirik asid (GABA), glutamat, reaktif aldehidler,
primer amin oksidaz (semikarbazid sensitif amin oksidaz).

Klinik Psikofarmakoloji Biilteni 2010;20:179-186

ABSTRACT:
Phenelzine: An old drug that may hold clues to
the development of new neuroprotective agents

The monoamine oxidase (MAO)-inhibiting antidepressant
phenelzine (PLZ) is also used in the treatment of anxiety
disorders such as panic disorder and social anxiety disorder
and has been shown to have neuroprotective actions in an
animal model of transient forebrain ischemia. Phenelzine
has multiple actions in addition to inhibition of MAO that
may contribute to its pharmacological and therapeutic
profile. These actions include inhibition of GABA
transaminase and elevation of brain levels of GABA, effects
on functional availability of glutamate, sequestration of
reactive aldehydes, inhibition of primary amine oxidase
and effects on brain-derived neurotrophic factor (BDNF). 2-
Phenylethylidenehydrazine (PEH) has been identified as a
major metabolite of PLZ and has also been shown to
elevate brain levels of GABA, to sequester reactive
aldehydes and to exert neuroprotective effects in a
transient forebrain ischemia model. The actions of PLZ and
PEH should be considered when designing future drugs for
the treatment of psychiatric and neurologic disorders,
particularly those involving neurodegeneration.

Key words: Phenelzine, neuroprotection, y-aminobutyric
acid (GABA), glutamate, reactive aldehydes, primary amine
oxidase (semicarbazide sensitive amine oxidase)
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INTRODUCTION

Phenelzine (PLZ) (Figure 1) is an irreversible, non-
selective monoamine oxidase inhibitor (MAOI) used
clinically for the treatment of a number of psychiatric
disorders, including major depression (1), atypical
depression (2-4), panic disorder (5,6), and social anxiety
disorder (7). It has also been reported to reduce neuronal
loss in a gerbil model of transient forebrain ischemia (8).

PLZ increases brain levels of the classical monoamine
(9-12)
(phenylethylamine (PEA), tyramine and tryptamine) (13).
However, it also inhibits GABA-transaminase (GABA-T)

neurotransmitters and trace amines
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(10,14,15) and markedly increases brain levels of the
inhibitory amino acid transmitter A-aminobutyric acid
(GABA) (10,14-21). GABA-T requires pyridoxal
phosphate (PLP) as a cofactor, and PLZ also inhibits a
number of other PLP-dependent enzymes (22-25).
Administration of PLZ to rodents increases brain
GABA levels up to 3-4 times control values (19), but
GABA-T activity is not inhibited in vivo by more than
50% even at doses as high as 60 mg/kg (15), suggesting
that other, as yet unidentified mechanisms may also be
involved in PLZ’s GABA-elevating effect. PLZ has been
reported to produce a transient decrease in brain levels of
glutamine and glutamate (26,27), a decrease in glutamate-
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glutamine cycling flux between neurons and glia (27), and
a reduction in KCl-evoked glutamate release (28).
However, while studies consistently report that PLZ
causes transient decreases in whole brain glutamine
levels, the effects of PLZ on glutamate are much less
robust, with some (27), but not all (17) studies reporting a
decrease in whole brain glutamate levels. In this regard, it
is of interest that researchers in the Neurochemical
Research Unit have recently found that PLZ decreases
glutamate release from astrocytes (Song, Baker, and Todd,
unpublished). PLZ may reverse the activity of the GABA
transporters (GATs), thus exporting GABA from the
presynaptic neuron.(29).

B-PHENYLETHYLIDENEHYDRAZINE
(PEH)

PLZ is interesting in that not only is it a MAOI, it is
also a substrate for MAO (30). In rats, inhibition of MAO
prior to PLZ administration markedly reduces the
inhibition of GABA-T activity and the elevation of brain
GABA (15,21), suggesting that a metabolite produced by
the action of MAO on PLZ is responsible for these actions
on GABA. This metabolite has subsequently been
demonstrated to be B-phenylethylidenehydrazine (PEH)
(Figure 1) (MacKenzie, Knaus and Baker, unpublished), a
compound shown by us to transiently decrease whole
brain glutamine levels and to increase extracellular
GABA in the striatum (31). Unlike PLZ, PEH has only
weak inhibitory effects on MAO (32), suggesting that
PEH could be an interesting therapeutic alternative to PLZ
in some disorders since it has the GABAergic actions of
the parent drug, but would be unlikely to the produce the

H\
NH,
PLZ
N N,
PEH

Figure 1: The chemical structures of PLZ and PEH

“cheese effect”, a problematic food-drug interaction
associated with irreversible inhibitors of MAO . PEH has
also been reported to reduce epileptic activity in rat
(29) and, like PLZ, to be
neuroprotective in a gerbil transient forebrain ischemia
model (33).

hippocampal slices

NEUROPROTECTIVE
MECHANISMS OF ACTION OF
PLZ

The neuroprotective action of PLZ could potentially
not only lead to a reduction in the disability that so often
occurs following stroke in humans, but also provide
insight into novel therapeutic interventions for a number
of neurodegenerative conditions. There are several
of PLZ that
neuroprotective actions.

properties could account for its

Phenelzine elevates brain GABA levels

PLZ produces a marked and long-lasting increase in
brain levels of GABA, and this elevation may counteract
the excitotoxicity associated with excessive activity of
glutamate which is thought to be an important contributor
to the neurodegeneration observed in stroke and a number
of other neurological and psychiatric conditions. Many
studies have reported marked increases in brain glutamate
levels following ischemia (34-37), and a reduction in
to be
neuroprotective in this context. Initial concomitant

glutamatergic activity has been shown
increases in brain levels of glutamate and GABA in
cerebral ischemia have been reported. However, the
increase in GABA is usually much more transient than
that of glutamate, with the initial increase in brain GABA
followed by a longer-lasting decrease in brain levels and
function of this inhibitory neurotransmitter (38-45). This
decrease in GABAergic activity likely exacerbates the
neuronal damage induced by excitotoxicity in the long
term, since the opposing actions of the GABAergic
system on the hyperactive glutamatergic system are
reduced (42).

While antagonism of glutamate NMDA receptors can
reduce cell loss in both in vitro and in vivo models of
excitotoxicity, increasing GABAergic transmission can

also counteract excitotoxic damage, probably with fewer
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adverse side-effects than observed with NMDA receptor
antagonists. GABAergic agents, including tiagabine and
vigabatrin (gamma-vinyl GABA), have been reported in
preclinical studies to reduce the extent of ischemia-
mediated neuronal damage in vivo and in vitro (40,46,47),
and thus it is not surprising that PLZ has been shown to
reduce neuronal damage in an animal model of ischemia
(8). It is also interesting to note that glutamate-associated
excitotoxicity is also thought to play a role in the
neurodegeneration observed in Alzheimer’s disease (48-
50) and GABAergic deficits have been reported in AD,
although these latter findings are conflicting and
complicated by variables such as illness severity and post-
mortem handling of brain tissue (51). Facilitation of
GABAergic transmission has been reported to result in
neuroprotective effects both in vivo and in vitro against §3-
amyloid (AB) mediated toxicity, suggesting that PLZ and
PEH should be considered as possible adjunctive drugs in
the treatment of AD.

Phenelzine and reactive aldehydes

There has been a great deal of interest in recent years
in possible neurotoxic effects of reactive aldehydes such
as 3-aminopropanal (3-AP), acrolein, and formaldehyde
in neurodegenerative disorders. Metabolism of the
polyamines spermidine and spermine, catalyzed by
polyamine oxidase, produces putrescine (another
polyamine) and 3-AP and acrolein as by-products (52).
The metabolism of methylamine (MA) and aminoacetone,
via the action of semicarbazide-sensitive amine oxidase
(SSAO) (now called primary amine oxidase), results in
production of FA and methylglyoxal, respectively (53).
Aldehydes, such as acrolein, 4-hydroxynonenal (4-HNE)
and malondialdehyde, are products of lipid peroxidation
[oxidative damage to lipids by reactive oxygen species
(ROS)] (54,55), and high aldehyde concentrations are
considered to be biological markers of oxidative stress
(56).

Free reactive aldehydes can bind rapidly to amino
acids, proteins, nucleic acids and lipids, forming
irreversible adducts that can cause inhibition of synthesis
of protein, RNA and DNA, and can interfere with the
functioning of enzymes, membrane transporters and cell
membranes (54,57). Acrolein can induce apoptosis via
direct toxic effects on mitochondria (58), and 3-AP has

been shown to cause lysosomal leakage or rupture,
resulting in mitochondrial damage and activation of
apoptotic cascades (and often cellular necrosis as well)
(59-61). Several aldehydes have been reported to deplete
levels of the endogenous antioxidant glutathione,
exacerbating oxidative damage (62,63).

Theoretically, antioxidants counteract the actions of
ROS and therefore reduce lipid peroxidation and the
generation of the resultant aldehyde byproducts, but
antioxidants have not been particularly effective in
preventing aldehyde-mediated cytotoxicity either in
animal models (8) or clinically (64). An effective
alternative method for reducing aldehyde-mediated
toxicity is “sequestering” through direct chemical
interaction with the aldehyde, producing non-reactive and
non-toxic products, thus reducing the reactive “aldehyde
load.”  For

cyclohexylhydroxylamine and t-butylhydroxylamine

example,  N-benzylhydroxylamine,
sequester 3-AP, presumably forming inert oximes, and
decrease aldehyde-mediated neurodegeneration in vitro
(8). Aminoguanidine sequesters FA in vitro and in vivo
(65), and acrolein and 3-AP have been shown to be
sequestered by hydralazine, dihydralazine and PLZ,
producing inert hydrazones (8,66). PLZ was also shown to
sequester 4-HNE in vitro (67). The free hydrazine group
of PLZ interacts with the aldehyde to produce a hydrazone
molecule (Figure 2). PEH should also have the same
property, and indeed has been shown recently to sequester
FA (MacKenzie and Baker, unpublished). Both drugs also
elevate brain levels of ornithine (68), an amino acid that is
converted into polyamines, the source of potent reactive
aldehydes; the reason for this elevation is not yet
established, but it will be of interest to determine if it
reflects a reduction in brain levels of polyamines.

High levels of free aldehydes and/or protein adducts
formed by acrolein, 4-HNE, malondialdehyde and
methylglyoxal (all products of lipid peroxidation) have
been reported in AD brains, often colocalized with
N

\N —C——R

Figure 2: General structure of a hydrazone formed by the

reaction of PLZ with a reactive aldehyde
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neurofibrillary tangles (57,69-71). Elevated acrolein
levels may contribute to mitochondrial dysfunction in AD
(72), and several aldehydes, including FA, have been
reported to induce AB aggregation and fibrillogenesis in
vitro (73). FA has also been reported to be involved in the
production of amyloid-like complexes (61), and to induce
polymerization of tau protein both in vitro and in vivo
(74). Importantly, the expression of primary amine
oxidase, the enzyme responsible for the conversion of MA
to FA, has been reported to be increased in AD brains (75),
and primary amine oxidase-mediated deamination has
been proposed to play a role in the pathogenesis of AD
(76). Sequestration of FA with aminoguanidine was
shown to prevent FA-induced A, aggregation both in vivo
and in vitro (65); this drug is not useful clinically due to
its harmful side effects, but these findings highlight the
importance of identifying other aldehyde-sequestering
drugs able to protect against FA-mediated pathology.

Phenelzine inhibits MAO and primary
amine oxidase activity

Increased MAO-B activity has been reported in aged
individuals and in several neurodegenerative disorders
(77,78), and increased intracellular Ca** (observed in AD
and other neurodegenerative diseases) has been reported
to contribute to increased MAO-A activity (79) (although
findings regarding changes in MAO-A activity in AD and
other degenerative disorders are conflicting). The toxic
products of MAO-catalyzed reactions (which include
reactive aldehydes and H202) probably contribute to the
neurodegeneration observed in these individuals. PLZ and
MAOIs
neuroprotective effects by inhibiting production of these

other would be expected to provide
toxic products, particularly in conditions where MAO
activity is increased. H202, a major ROS, can be
converted to toxic hydroxyl free radicals in the presence
of transition metal ions, possibly contributing to oxidative
stress (80).

PLZ also inhibits the activity of primary amine
oxidase (MacKenzie, Holt, and Baker, unpublished,
81,82), an enzyme located primarily on the outer
membrane of vascular endothelial cells, smooth muscle
cells and adipose cells, and also found circulating in the
blood. In the brain it is found solely in the cerebral

vasculature (82,83). This enzyme deaminates MA and

aminoacetone (endogenous amines), resulting in
production of FA and methylglyoxal, respectively (53).
Interestingly, the activity and expression of primary amine
oxidase is reportedly elevated in serum and brains
respectively of AD subjects (75,84), suggesting that
inhibition of this amine oxidase could potentially lead to
neuroprotective effects by reducing the formation of toxic

products.
Effects of PLZ on neurotrophic factors

Brain-derived neurotrophic factor (BDNF) is the most
prevalent neurotrophic factor in adult brain and is
important for neuronal survival and activity (85). The
actions of BDNF depend on two secreted forms, the
precursor (pro-BDNF) and the mature (BDNF) forms,
the p75
neurotrophin receptor and the tropomysin related kinase B

which activate two distinct receptors,
(TrkB) receptor, respectively. Abnormalities involving
BDNF have been reported in various psychiatric and
neurological disorders, and several antidepressants,
including PLZ, are known to elevate brain BDNF levels
(86,87), partly via the activation of CREB (cAMP
response element binding protein), a transcription factor
(88). We have recently observed PLZ can alter the
expression and release of BDNF in astrocytes and neurons
(Song, Baker, and Todd, unpublished).

SUMMARY

There has been increased interest in MAOISs in general
in recent years because of their possible neuroprotective
properties. Much of that research has focused on the N-
propargyl drug 1-deprenyl and related analogues (89), but
PLZ, a hydrazine drug, should also be considered in this
regard. PLZ is a multifaceted drug with regard to both its
therapeutic profile and its neuropharmacological

mechanisms of action. Factors which could be
contributing to its neuroprotective effects include the
following: inhibition of MAO-A and —B; eclevation of
brain GABA levels; sequestration of reactive aldehydes;
and inhibition of primary amine oxidase. Its major
metabolite, PEH, also elevates brain GABA levels and
sequesters reactive aldehydes and should also be
considered as a neuroprotective drug in its own right.

In summary, studies on the mechanisms of action and
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metabolism of PLZ suggest that the clinical application of
PLZ should be wider than it already is (e.g. should it be
used in post-stroke depression and in AD?) and that
analogues of PLZ and PEH should be developed as

potential new drugs for treating psychiatric and

neurologic disorders, particularity those involving
neurodegeneration.
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